

KOSEN OF KING MONGKUT'S INSTITUTE OF TECHNOLOGY LADKRABANG

A Comparative Study of Pathfinder Algorithms with

Author: Krittin Jeecomwan, Anyamanee Songkittiphong **3D Visualization** Advisors: Saung Hnin Pwint Oo, Mio Kobayashi, Yuki Yoshikawa

Problem

Path Algorithms which are normally used are Depth-First Search (DFS), Breadth-First Search (BFS) and A-star (A*) which we focus on.

What is the most suitable algorithm for different specific uses? Create measurement and visualize the results by designing mazes and compare all results.

Trials

BFS DFS A*

Fig. 4 Comparison of the number of paths.

Fig. 5 Comparison of paths and time among algorithms. (in average)

Fig. 6 Simulation results.

A* consistently emerged as the most efficient, providing optimal

Fig. 3 Pathfinding Simulation in Unity.

- We developed a tool to demonstrate these algorithms, focusing on how each algorithm navigates from the start to the goal while avoiding obstacles, comparing their time and space.
- Using 3D animation in Unity, we generate 32×32 random maps. • Enables users to observe the algorithms in action.
- Enhances understanding of their decision-making processes.
- Highlights benefits such as improved efficiency, scalability, and decision-making in AI systems.

- paths by balancing speed and accuracy, making it highly suitable for applications like robotics and gaming that require precise navigation.
- BFS reliably located the shortest paths by exploring level-by-level but consumed significantly more memory.
- DFS used less memory, yet often produced longer, less direct paths due to its deep, branch-first approach.
- These findings underscore important trade-offs in memory efficiency and path accuracy across different algorithms.
- Future research could expand this analysis to dynamic, complex environments, broadening their applicability in real-world navigation, autonomous systems, and logistics.