

QUANTUM-ENHANCED DEEP LEARNING FOR PREDICTING PCSK9/NARC-1 INHIBITOR BIOACTIVITY: A NOVEL APPROACH **TOWARDS CORONARY ARTERY DISEASE THERAPY**

Nita Jongkraijak, Chontiwa Chonchanokboon, Kittiphop Khiansa, Dr.Sarote Boonseng, Thanatkrit Kaewtem Mahidol Wittayanusorn School, 364 Moo 5, Salaya, Phuttamonthon, Nakhon Pathom 73170

Reduces failure and saves time & cost

Fig. 2. Correlation between energy level and plC_{50} of molecules in each cluster

 Table 1. Comparing *R-squared* value and *MSE* value of each model

Model	R-squared	MSE
Multi-Input model (After Tuning)	0.8105	0.4629
Multi-Input model (Before Tuning)	0.5598	0.9116
Random Forest Regressor	0.5197	1.0853
CNN	0.3995	1.3913

Fig. 1. Multi-input model architecture

High efficiency in predicting the drug's bioactivity

compared to a normal model with *R*-squared = 0.8105 and *MSE* = 0.4629

Reduce the time spent on finding the bioactivity of new drugs that target proteins.

[1] Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241-1250. doi: 10.1016/j.drudis.2018.01.039. [2] Chattaraj, P. K., Giri, S., & Duley, S. (2011). Reactivity descriptors from chemical hardness, chemical potential, and electrophilicity viewpoint. Physical Chemistry Chemical Physics, 13(42), 17407-17418. doi: 10.1039/C1CP21824B.